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LETTER TO THE EDITOR 

Exact closed form of the return probability on the Bethe 
lattice 

.. . .  Achille Giacometti 
Institut fer Festkorperfonchung der Kemforschungsanlange, Poslfach 1913, D-52425, Jiilich, 
-Y 

Received 30 September 1994 , ,  

Abstract. An exact closed-form solution for the return probability of a random walk on the 
Bethe latticc is given. The long-time asymptotic form con- a previously known expression. 
It is, however, shown that this exact result reduces to the proper expression when the Bethe 
lattice degenerates on a line, unlike the asymptotic result which is singular. This is shown to 
be an artefact of the asymptotic expansion. The dendry of states is also calculated. 

Besides being an interesting type of graph per se, the Bethe lattice (BL) is also reckoned to 
be a paradigm of a lattice in the limit of high dimensionality. A BL (see figure 1) is usually 
defined as a set of sites connected by bonds such that each site has the same coordination 
number and there are no closed loops. It differs from the so-called Cayley tree by the fact 
that the complication arising by the boundary conditions is neglected [l]. 
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Figure 1. Example of a BL with coordination number 
L = 3. Sites indicated with the same numbers n = 
0.1.2, . . . belong to the same shell. 

The problem of the random walk on a BL is not new [2,3]. However, up to now 
only asymptotic expressions were given. One of the surprising features of these asymptotic 
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expressions was the difficulty arising in the interpretation of the result in the limit when the 
BL collapses into a line. 

The main aim of this letter is to derive an exact closed form solution which, on one 
hand, confirms  previous^ asymptotic results, but, on the other hand, has the proper limit 
form when the BL reduces to a one-dim{nsiond lattice, thus confirmingthe exactness of the 
asymptotic procedure and solving the aforementioned interpretation puzzle. Moreover, we 
will provide an alternative-solution approach with respect to the previous investigations. 

Let us start from the general master equation on the lattice: 

Pz.00 + 1) = Px,o(t)  + C[wx. ,P, ,o( t )  - wy.xPx.o(t)l (1) 
Y ( X )  

where P,,o(t) is the probability density of being at site x at'time t having'started from site 
0 at the initial time to = 0. The notatian ., ,, y ( x )  means that the sum is restricted to the nearest 
neighbours y of x. In the BL case, w,,) = l/z, where z is the coordination number of the 
lattice. 

It is convenient to introduce the generating function of P,,o(t) (Green function): 

*=O 

The fact that all points belonging to the same shell are topologically .&valent allows us 
to map the solution for the BL onto the solution of a one-dimensional lattice with a defect. 
Therefore, the Green equation takes, on the BL, the form 

, ,  

Foo,o(~) = AF,,~(A) + 1 ( 3 3  

for the zeroth and nth shell, respectively. Here, P,,o(t) refers to the probability of being in 
the nth shell at time t having started from seed 0. 

The solution of equations ( 3 4  and (3b) is considerably simplified by noting that the 
ratio pn+~,&)/pn,~(b)  is independeni of n due to the homogeneity of the lattice and the 
particular boundary conditionst. It is then a simple matter to solve the quadratic equation 
resulting !?om (3b) and substitute the root, which has finite value in the b + 0 limit, into 
(3a) with the result 

This result was previously obtained by Cassi 131 by a different procedure. 
It is important to notice that, for z = 2, this expression reduces to the well known result 

of the generating function for the one-dimensional lattice [5].  It is also worth mentioning 
that, since the critical value for the fugacity A, = z / Z m  > l~for  z > 3 ,  the generating 
function &(b) is always real and finite for X ,< 1 and, therefore, a random walk on the 
Bethe lattice'cnnnot be critical., , , ' ,  

t This observation appears in 141 in lhe context of the Andenon localization. 
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Upon series expansion of equation (4) and using definition (2). one obtains after some 
algebra 

and Po,o(2t + 1) = 0 for t  
can be cast in the following closed form: 

0 with Po.o(O) = 1. After some manipulations this expression 

where r(t) is the gamma, function and 2F,(a,j3, y,z)  is the Gauss hypergeometric 
function [61.~ 

For large f ,  one can use the propertyt 

2F1@, B. B,  z) = (1 - z)-" (7) 

valid for arbitrary f i  and the Stirling approximation for the gamma function [6] to find, at 
the leading order in t >> 1, 

which confirms he asymptotic result derived in [3]. Note that in the limit z 3 2 (when 
the BL degenerates on a line), the expected asymptotic behaviour PO&) - r1I2 is nof 
recovered, both because the prefactor becomes singular and because the (universal) power 
law is not correct. 

We are now in the poshion to show that this is an hefac t  of the asymptotic expansion 
stemming from the fact that the limit t -+ 00 and z + 2 do not commute. Indeed, if we 
set z = 2 in the exact result (6) and use the fact that [6] 

we obtain 

which is the well known result for the onedimensional case [SI. This latter result could in 
fact be derived by starting from equation (4) for z = 2 and using a procedure similar to the 

It is also possible to compute the density of states, associated with master equation (I), 
on the BL. This was not previously calculated. ~Indeed.~using the transformation procedure 
between discrete and continuum times: described in 171. it is not hkd  to see that the Laplace 
transform of the return probability is related to the generating function Po&) by 

, .  .~ ~ 
, , .  one employed here. ~ . .. , 

t A more rigorous procedure involving a Kummer transformation yields the same result. 
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Figure 2. Density of Rates associated IO the masIeer equation in the case of a one-dimensional 
lattice (z  = 2) and of a Be$= lattice (z = 3,4). 

, , ,  

where w is the Laplace variable conjugate of time. Then, using equations (4) and (1 l), one 
obtains 

2(z - l)/z 
Fo.o(w) = 

( ( z  - 2)/z)(l + 0) + Jw' + 2w + ( z  - 2)2/22' 

The density of state p ( c )  is then well known [8] to be given by the analytical continuation 

(13) 
1 

p ( c )  = -- Im130,0(-c + io+). 
JI 

Then, in the present case, the result of the analytical continuation is 

(14) 
z J2c - - (z - 2)2/z2 if 2E - €2 - (z - *)2/$ > 0 

otherwise 

which, for z = 2 ,  reduces to the well known formula for the density of states of a one- 
dimensional lattice [9]. Figure 2 shows the comparison between the'case of the one- 
dimensional lattice (z = 2) and the BL (z = 3,4). 
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In summary, we have presented an exact closed-form solution for the retum probability 
and the density of states on the EL. Previous asymptotic results were confumed and explained 
in terms of this solution. Although other relevant quantities, beside the ones presented here, 
could, in principle, be obtained, the required algebra rapidly becomes very involved. This is 
beyond the purposes of the present work; the main objective of which is the confirmation of 
the asymptotic results, along with the removal of the inconsistency contained in them. As 
a by-product of our investigation, we have also presented an alternative simplified solution 
procedure with respect to the previous two approaches. 

This work was supported by the Human Capital and Mobility programme under contrkt 
no ERB4001GT932058. I wish to thank Amos Maritan, Klaus Kehr and Flavio Sen0 for 
a critical reading of the manuscript. I am especially grateful to Davide Cassi and Sofia 
Regina for their many constructive criticisms and suggestions and for having pointed out 
an error in the original draft of the manuscript. 
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